Реши за n
n=-\frac{2a_{n}-1}{a_{n}-2}
a_{n}\neq 2
Реши за a_n
a_{n}=\frac{2n+1}{n+2}
n\neq -2
Сподели
Копирани во клипбордот
a_{n}\left(n+2\right)=2n+1
Променливата n не може да биде еднаква на -2 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со n+2.
a_{n}n+2a_{n}=2n+1
Користете го дистрибутивното својство за да помножите a_{n} со n+2.
a_{n}n+2a_{n}-2n=1
Одземете 2n од двете страни.
a_{n}n-2n=1-2a_{n}
Одземете 2a_{n} од двете страни.
\left(a_{n}-2\right)n=1-2a_{n}
Комбинирајте ги сите членови што содржат n.
\frac{\left(a_{n}-2\right)n}{a_{n}-2}=\frac{1-2a_{n}}{a_{n}-2}
Поделете ги двете страни со a_{n}-2.
n=\frac{1-2a_{n}}{a_{n}-2}
Ако поделите со a_{n}-2, ќе се врати множењето со a_{n}-2.
n=\frac{1-2a_{n}}{a_{n}-2}\text{, }n\neq -2
Променливата n не може да биде еднаква на -2.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}