Фактор
8\left(y-\left(-\frac{3\sqrt{10}}{2}-5\right)\right)\left(y-\left(\frac{3\sqrt{10}}{2}-5\right)\right)
Процени
8y^{2}+80y+20
Графика
Сподели
Копирани во клипбордот
8y^{2}+80y+20=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
y=\frac{-80±\sqrt{80^{2}-4\times 8\times 20}}{2\times 8}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
y=\frac{-80±\sqrt{6400-4\times 8\times 20}}{2\times 8}
Квадрат од 80.
y=\frac{-80±\sqrt{6400-32\times 20}}{2\times 8}
Множење на -4 со 8.
y=\frac{-80±\sqrt{6400-640}}{2\times 8}
Множење на -32 со 20.
y=\frac{-80±\sqrt{5760}}{2\times 8}
Собирање на 6400 и -640.
y=\frac{-80±24\sqrt{10}}{2\times 8}
Вадење квадратен корен од 5760.
y=\frac{-80±24\sqrt{10}}{16}
Множење на 2 со 8.
y=\frac{24\sqrt{10}-80}{16}
Сега решете ја равенката y=\frac{-80±24\sqrt{10}}{16} кога ± ќе биде плус. Собирање на -80 и 24\sqrt{10}.
y=\frac{3\sqrt{10}}{2}-5
Делење на -80+24\sqrt{10} со 16.
y=\frac{-24\sqrt{10}-80}{16}
Сега решете ја равенката y=\frac{-80±24\sqrt{10}}{16} кога ± ќе биде минус. Одземање на 24\sqrt{10} од -80.
y=-\frac{3\sqrt{10}}{2}-5
Делење на -80-24\sqrt{10} со 16.
8y^{2}+80y+20=8\left(y-\left(\frac{3\sqrt{10}}{2}-5\right)\right)\left(y-\left(-\frac{3\sqrt{10}}{2}-5\right)\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го -5+\frac{3\sqrt{10}}{2} со x_{1} и -5-\frac{3\sqrt{10}}{2} со x_{2}.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}