Прескокни до главната содржина
Реши за t
Tick mark Image

Слични проблеми од Web Search

Сподели

\frac{75}{5}=t^{2}
Поделете ги двете страни со 5.
15=t^{2}
Поделете 75 со 5 за да добиете 15.
t^{2}=15
Заменете ги страните така што сите променливи членови да се наоѓаат на левата страна.
t=\sqrt{15} t=-\sqrt{15}
Извадете квадратен корен од двете страни на равенката.
\frac{75}{5}=t^{2}
Поделете ги двете страни со 5.
15=t^{2}
Поделете 75 со 5 за да добиете 15.
t^{2}=15
Заменете ги страните така што сите променливи членови да се наоѓаат на левата страна.
t^{2}-15=0
Одземете 15 од двете страни.
t=\frac{0±\sqrt{0^{2}-4\left(-15\right)}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, 0 за b и -15 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-15\right)}}{2}
Квадрат од 0.
t=\frac{0±\sqrt{60}}{2}
Множење на -4 со -15.
t=\frac{0±2\sqrt{15}}{2}
Вадење квадратен корен од 60.
t=\sqrt{15}
Сега решете ја равенката t=\frac{0±2\sqrt{15}}{2} кога ± ќе биде плус.
t=-\sqrt{15}
Сега решете ја равенката t=\frac{0±2\sqrt{15}}{2} кога ± ќе биде минус.
t=\sqrt{15} t=-\sqrt{15}
Равенката сега е решена.