Прескокни до главната содржина
Реши за x (complex solution)
Tick mark Image
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Според теоремата за рационален корен, сите рационални корени од полиномот се во форма \frac{p}{q}, каде p го дели константниот термин 729, а q го дели главниот коефициент 64. Наведи ги сите кандидати \frac{p}{q}.
x=-\frac{9}{4}
Најдете корен, така што ќе ги испробате сите вредности со цели броеви, почнувајќи од најмалата, според апсолутна вредност. Доколку нема корени на цели броеви, пробајте со дропки.
16x^{2}-36x+81=0
Според теоремата за факторизација, x-k е фактор од полиномот за секој корен k. Поделете 64x^{3}+729 со 4\left(x+\frac{9}{4}\right)=4x+9 за да добиете 16x^{2}-36x+81. Реши ја равенката каде резултатот е еднаков на 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Сите равенки во обликот ax^{2}+bx+c=0 може да се решат со помош на квадратна формула: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заменете ги 16 со a, -36 со b и 81 со c во квадратната формула.
x=\frac{36±\sqrt{-3888}}{32}
Пресметајте.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Решете ја равенката 16x^{2}-36x+81=0 кога ± е плус и кога ± е минус.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Наведете ги сите најдени решенија.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Според теоремата за рационален корен, сите рационални корени од полиномот се во форма \frac{p}{q}, каде p го дели константниот термин 729, а q го дели главниот коефициент 64. Наведи ги сите кандидати \frac{p}{q}.
x=-\frac{9}{4}
Најдете корен, така што ќе ги испробате сите вредности со цели броеви, почнувајќи од најмалата, според апсолутна вредност. Доколку нема корени на цели броеви, пробајте со дропки.
16x^{2}-36x+81=0
Според теоремата за факторизација, x-k е фактор од полиномот за секој корен k. Поделете 64x^{3}+729 со 4\left(x+\frac{9}{4}\right)=4x+9 за да добиете 16x^{2}-36x+81. Реши ја равенката каде резултатот е еднаков на 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Сите равенки во обликот ax^{2}+bx+c=0 може да се решат со помош на квадратна формула: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заменете ги 16 со a, -36 со b и 81 со c во квадратната формула.
x=\frac{36±\sqrt{-3888}}{32}
Пресметајте.
x\in \emptyset
Квадратниот корен на негативните броеви не е дефиниран во реалното поле, па нема решенија.
x=-\frac{9}{4}
Наведете ги сите најдени решенија.