Реши за v
v=\left(1-6w\right)^{2}
-\left(1-6w\right)\geq 0
Реши за w
w=\frac{\sqrt{v}+1}{6}
v\geq 0
Сподели
Копирани во клипбордот
\sqrt{v}+1=6w
Заменете ги страните така што сите променливи членови да се наоѓаат на левата страна.
\sqrt{v}=6w-1
Одземете 1 од двете страни.
v=\left(6w-1\right)^{2}
Кревање на двете страни на равенката на квадрат.
6w=\sqrt{v}+1
Равенката е во стандардна форма.
\frac{6w}{6}=\frac{\sqrt{v}+1}{6}
Поделете ги двете страни со 6.
w=\frac{\sqrt{v}+1}{6}
Ако поделите со 6, ќе се врати множењето со 6.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}