Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

5x^{2}-12x+5=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 5}}{2\times 5}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 5}}{2\times 5}
Квадрат од -12.
x=\frac{-\left(-12\right)±\sqrt{144-20\times 5}}{2\times 5}
Множење на -4 со 5.
x=\frac{-\left(-12\right)±\sqrt{144-100}}{2\times 5}
Множење на -20 со 5.
x=\frac{-\left(-12\right)±\sqrt{44}}{2\times 5}
Собирање на 144 и -100.
x=\frac{-\left(-12\right)±2\sqrt{11}}{2\times 5}
Вадење квадратен корен од 44.
x=\frac{12±2\sqrt{11}}{2\times 5}
Спротивно на -12 е 12.
x=\frac{12±2\sqrt{11}}{10}
Множење на 2 со 5.
x=\frac{2\sqrt{11}+12}{10}
Сега решете ја равенката x=\frac{12±2\sqrt{11}}{10} кога ± ќе биде плус. Собирање на 12 и 2\sqrt{11}.
x=\frac{\sqrt{11}+6}{5}
Делење на 12+2\sqrt{11} со 10.
x=\frac{12-2\sqrt{11}}{10}
Сега решете ја равенката x=\frac{12±2\sqrt{11}}{10} кога ± ќе биде минус. Одземање на 2\sqrt{11} од 12.
x=\frac{6-\sqrt{11}}{5}
Делење на 12-2\sqrt{11} со 10.
5x^{2}-12x+5=5\left(x-\frac{\sqrt{11}+6}{5}\right)\left(x-\frac{6-\sqrt{11}}{5}\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го \frac{6+\sqrt{11}}{5} со x_{1} и \frac{6-\sqrt{11}}{5} со x_{2}.