Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

a+b=13 ab=5\times 6=30
Факторирајте го изразот со групирање. Прво, изразот треба да се препише како 5x^{2}+ax+bx+6. За да ги најдете a и b, поставете систем за решавање.
1,30 2,15 3,10 5,6
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Наведете ги сите парови цели броеви што даваат производ 30.
1+30=31 2+15=17 3+10=13 5+6=11
Пресметајте го збирот за секој пар.
a=3 b=10
Решението е парот што дава збир 13.
\left(5x^{2}+3x\right)+\left(10x+6\right)
Препиши го 5x^{2}+13x+6 како \left(5x^{2}+3x\right)+\left(10x+6\right).
x\left(5x+3\right)+2\left(5x+3\right)
Исклучете го факторот x во првата група и 2 во втората група.
\left(5x+3\right)\left(x+2\right)
Факторирај го заедничкиот термин 5x+3 со помош на дистрибутивно својство.
5x^{2}+13x+6=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\times 5\times 6}}{2\times 5}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-13±\sqrt{169-4\times 5\times 6}}{2\times 5}
Квадрат од 13.
x=\frac{-13±\sqrt{169-20\times 6}}{2\times 5}
Множење на -4 со 5.
x=\frac{-13±\sqrt{169-120}}{2\times 5}
Множење на -20 со 6.
x=\frac{-13±\sqrt{49}}{2\times 5}
Собирање на 169 и -120.
x=\frac{-13±7}{2\times 5}
Вадење квадратен корен од 49.
x=\frac{-13±7}{10}
Множење на 2 со 5.
x=-\frac{6}{10}
Сега решете ја равенката x=\frac{-13±7}{10} кога ± ќе биде плус. Собирање на -13 и 7.
x=-\frac{3}{5}
Намалете ја дропката \frac{-6}{10} до најниските услови со извлекување и откажување на 2.
x=-\frac{20}{10}
Сега решете ја равенката x=\frac{-13±7}{10} кога ± ќе биде минус. Одземање на 7 од -13.
x=-2
Делење на -20 со 10.
5x^{2}+13x+6=5\left(x-\left(-\frac{3}{5}\right)\right)\left(x-\left(-2\right)\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го -\frac{3}{5} со x_{1} и -2 со x_{2}.
5x^{2}+13x+6=5\left(x+\frac{3}{5}\right)\left(x+2\right)
Поедноставете ги сите изрази на формуларот p-\left(-q\right) со p+q.
5x^{2}+13x+6=5\times \frac{5x+3}{5}\left(x+2\right)
Соберете ги \frac{3}{5} и x со наоѓање на заедничкиот именител и собирање на броителите. Потоа намалете ја дропката на најмалите членови ако е можно.
5x^{2}+13x+6=\left(5x+3\right)\left(x+2\right)
Избришете го најголемиот заеднички фактор 5 во 5 и 5.