Реши за x
x=1
Графика
Сподели
Копирани во клипбордот
4x-2-2x^{2}=0
Одземете 2x^{2} од двете страни.
2x-1-x^{2}=0
Поделете ги двете страни со 2.
-x^{2}+2x-1=0
Прераспоредете го полиномот за да го ставите во стандардна форма. Распоредете ги членовите почнувајќи од највисокиот да најнискиот степен.
a+b=2 ab=-\left(-1\right)=1
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како -x^{2}+ax+bx-1. За да ги најдете a и b, поставете систем за решавање.
a=1 b=1
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Единствениот таков пар е решението на системот.
\left(-x^{2}+x\right)+\left(x-1\right)
Препиши го -x^{2}+2x-1 како \left(-x^{2}+x\right)+\left(x-1\right).
-x\left(x-1\right)+x-1
Факторирај го -x во -x^{2}+x.
\left(x-1\right)\left(-x+1\right)
Факторирај го заедничкиот термин x-1 со помош на дистрибутивно својство.
x=1 x=1
За да најдете решенија за равенката, решете ги x-1=0 и -x+1=0.
4x-2-2x^{2}=0
Одземете 2x^{2} од двете страни.
-2x^{2}+4x-2=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете -2 за a, 4 за b и -2 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Квадрат од 4.
x=\frac{-4±\sqrt{16+8\left(-2\right)}}{2\left(-2\right)}
Множење на -4 со -2.
x=\frac{-4±\sqrt{16-16}}{2\left(-2\right)}
Множење на 8 со -2.
x=\frac{-4±\sqrt{0}}{2\left(-2\right)}
Собирање на 16 и -16.
x=-\frac{4}{2\left(-2\right)}
Вадење квадратен корен од 0.
x=-\frac{4}{-4}
Множење на 2 со -2.
x=1
Делење на -4 со -4.
4x-2-2x^{2}=0
Одземете 2x^{2} од двете страни.
4x-2x^{2}=2
Додај 2 на двете страни. Секој број собран со нула го дава истиот број.
-2x^{2}+4x=2
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=\frac{2}{-2}
Поделете ги двете страни со -2.
x^{2}+\frac{4}{-2}x=\frac{2}{-2}
Ако поделите со -2, ќе се врати множењето со -2.
x^{2}-2x=\frac{2}{-2}
Делење на 4 со -2.
x^{2}-2x=-1
Делење на 2 со -2.
x^{2}-2x+1=-1+1
Поделете го -2, коефициентот на членот x, со 2 за да добиете -1. Потоа додајте го квадратот од -1 на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-2x+1=0
Собирање на -1 и 1.
\left(x-1\right)^{2}=0
Фактор x^{2}-2x+1. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Извадете квадратен корен од двете страни на равенката.
x-1=0 x-1=0
Поедноставување.
x=1 x=1
Додавање на 1 на двете страни на равенката.
x=1
Равенката сега е решена. Решенијата се исти.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}