Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

4=\left(x-1\right)^{2}
Помножете x-1 и x-1 за да добиете \left(x-1\right)^{2}.
4=x^{2}-2x+1
Користете ја биномната теорема \left(a-b\right)^{2}=a^{2}-2ab+b^{2} за проширување на \left(x-1\right)^{2}.
x^{2}-2x+1=4
Заменете ги страните така што сите променливи членови да се наоѓаат на левата страна.
x^{2}-2x+1-4=0
Одземете 4 од двете страни.
x^{2}-2x-3=0
Одземете 4 од 1 за да добиете -3.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -2 за b и -3 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Квадрат од -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Множење на -4 со -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Собирање на 4 и 12.
x=\frac{-\left(-2\right)±4}{2}
Вадење квадратен корен од 16.
x=\frac{2±4}{2}
Спротивно на -2 е 2.
x=\frac{6}{2}
Сега решете ја равенката x=\frac{2±4}{2} кога ± ќе биде плус. Собирање на 2 и 4.
x=3
Делење на 6 со 2.
x=-\frac{2}{2}
Сега решете ја равенката x=\frac{2±4}{2} кога ± ќе биде минус. Одземање на 4 од 2.
x=-1
Делење на -2 со 2.
x=3 x=-1
Равенката сега е решена.
4=\left(x-1\right)^{2}
Помножете x-1 и x-1 за да добиете \left(x-1\right)^{2}.
4=x^{2}-2x+1
Користете ја биномната теорема \left(a-b\right)^{2}=a^{2}-2ab+b^{2} за проширување на \left(x-1\right)^{2}.
x^{2}-2x+1=4
Заменете ги страните така што сите променливи членови да се наоѓаат на левата страна.
\left(x-1\right)^{2}=4
Фактор x^{2}-2x+1. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Извадете квадратен корен од двете страни на равенката.
x-1=2 x-1=-2
Поедноставување.
x=3 x=-1
Додавање на 1 на двете страни на равенката.