Реши за x
x = \frac{\sqrt{5} + 3}{2} \approx 2,618033989
x=\frac{3-\sqrt{5}}{2}\approx 0,381966011
Графика
Сподели
Копирани во клипбордот
4x-4x^{2}=-8x+4
Одземете 4x^{2} од двете страни.
4x-4x^{2}+8x=4
Додај 8x на двете страни.
12x-4x^{2}=4
Комбинирајте 4x и 8x за да добиете 12x.
12x-4x^{2}-4=0
Одземете 4 од двете страни.
-4x^{2}+12x-4=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-12±\sqrt{12^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете -4 за a, 12 за b и -4 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Квадрат од 12.
x=\frac{-12±\sqrt{144+16\left(-4\right)}}{2\left(-4\right)}
Множење на -4 со -4.
x=\frac{-12±\sqrt{144-64}}{2\left(-4\right)}
Множење на 16 со -4.
x=\frac{-12±\sqrt{80}}{2\left(-4\right)}
Собирање на 144 и -64.
x=\frac{-12±4\sqrt{5}}{2\left(-4\right)}
Вадење квадратен корен од 80.
x=\frac{-12±4\sqrt{5}}{-8}
Множење на 2 со -4.
x=\frac{4\sqrt{5}-12}{-8}
Сега решете ја равенката x=\frac{-12±4\sqrt{5}}{-8} кога ± ќе биде плус. Собирање на -12 и 4\sqrt{5}.
x=\frac{3-\sqrt{5}}{2}
Делење на -12+4\sqrt{5} со -8.
x=\frac{-4\sqrt{5}-12}{-8}
Сега решете ја равенката x=\frac{-12±4\sqrt{5}}{-8} кога ± ќе биде минус. Одземање на 4\sqrt{5} од -12.
x=\frac{\sqrt{5}+3}{2}
Делење на -12-4\sqrt{5} со -8.
x=\frac{3-\sqrt{5}}{2} x=\frac{\sqrt{5}+3}{2}
Равенката сега е решена.
4x-4x^{2}=-8x+4
Одземете 4x^{2} од двете страни.
4x-4x^{2}+8x=4
Додај 8x на двете страни.
12x-4x^{2}=4
Комбинирајте 4x и 8x за да добиете 12x.
-4x^{2}+12x=4
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
\frac{-4x^{2}+12x}{-4}=\frac{4}{-4}
Поделете ги двете страни со -4.
x^{2}+\frac{12}{-4}x=\frac{4}{-4}
Ако поделите со -4, ќе се врати множењето со -4.
x^{2}-3x=\frac{4}{-4}
Делење на 12 со -4.
x^{2}-3x=-1
Делење на 4 со -4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-1+\left(-\frac{3}{2}\right)^{2}
Поделете го -3, коефициентот на членот x, со 2 за да добиете -\frac{3}{2}. Потоа додајте го квадратот од -\frac{3}{2} на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-3x+\frac{9}{4}=-1+\frac{9}{4}
Кренете -\frac{3}{2} на квадрат со кревање и на броителот и на именителот на дропката на квадрат.
x^{2}-3x+\frac{9}{4}=\frac{5}{4}
Собирање на -1 и \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{5}{4}
Фактор x^{2}-3x+\frac{9}{4}. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Извадете квадратен корен од двете страни на равенката.
x-\frac{3}{2}=\frac{\sqrt{5}}{2} x-\frac{3}{2}=-\frac{\sqrt{5}}{2}
Поедноставување.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
Додавање на \frac{3}{2} на двете страни на равенката.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}