Реши за x (complex solution)
x=\frac{-\sqrt{7}i-1}{2}\approx -0,5-1,322875656i
x=\frac{-1+\sqrt{7}i}{2}\approx -0,5+1,322875656i
Графика
Сподели
Копирани во клипбордот
3x+3-x^{2}=4x+5
Одземете x^{2} од двете страни.
3x+3-x^{2}-4x=5
Одземете 4x од двете страни.
-x+3-x^{2}=5
Комбинирајте 3x и -4x за да добиете -x.
-x+3-x^{2}-5=0
Одземете 5 од двете страни.
-x-2-x^{2}=0
Одземете 5 од 3 за да добиете -2.
-x^{2}-x-2=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете -1 за a, -1 за b и -2 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-2\right)}}{2\left(-1\right)}
Множење на -4 со -1.
x=\frac{-\left(-1\right)±\sqrt{1-8}}{2\left(-1\right)}
Множење на 4 со -2.
x=\frac{-\left(-1\right)±\sqrt{-7}}{2\left(-1\right)}
Собирање на 1 и -8.
x=\frac{-\left(-1\right)±\sqrt{7}i}{2\left(-1\right)}
Вадење квадратен корен од -7.
x=\frac{1±\sqrt{7}i}{2\left(-1\right)}
Спротивно на -1 е 1.
x=\frac{1±\sqrt{7}i}{-2}
Множење на 2 со -1.
x=\frac{1+\sqrt{7}i}{-2}
Сега решете ја равенката x=\frac{1±\sqrt{7}i}{-2} кога ± ќе биде плус. Собирање на 1 и i\sqrt{7}.
x=\frac{-\sqrt{7}i-1}{2}
Делење на 1+i\sqrt{7} со -2.
x=\frac{-\sqrt{7}i+1}{-2}
Сега решете ја равенката x=\frac{1±\sqrt{7}i}{-2} кога ± ќе биде минус. Одземање на i\sqrt{7} од 1.
x=\frac{-1+\sqrt{7}i}{2}
Делење на 1-i\sqrt{7} со -2.
x=\frac{-\sqrt{7}i-1}{2} x=\frac{-1+\sqrt{7}i}{2}
Равенката сега е решена.
3x+3-x^{2}=4x+5
Одземете x^{2} од двете страни.
3x+3-x^{2}-4x=5
Одземете 4x од двете страни.
-x+3-x^{2}=5
Комбинирајте 3x и -4x за да добиете -x.
-x-x^{2}=5-3
Одземете 3 од двете страни.
-x-x^{2}=2
Одземете 3 од 5 за да добиете 2.
-x^{2}-x=2
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
\frac{-x^{2}-x}{-1}=\frac{2}{-1}
Поделете ги двете страни со -1.
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{2}{-1}
Ако поделите со -1, ќе се врати множењето со -1.
x^{2}+x=\frac{2}{-1}
Делење на -1 со -1.
x^{2}+x=-2
Делење на 2 со -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-2+\left(\frac{1}{2}\right)^{2}
Поделете го 1, коефициентот на членот x, со 2 за да добиете \frac{1}{2}. Потоа додајте го квадратот од \frac{1}{2} на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}+x+\frac{1}{4}=-2+\frac{1}{4}
Кренете \frac{1}{2} на квадрат со кревање и на броителот и на именителот на дропката на квадрат.
x^{2}+x+\frac{1}{4}=-\frac{7}{4}
Собирање на -2 и \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{7}{4}
Фактор x^{2}+x+\frac{1}{4}. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Извадете квадратен корен од двете страни на равенката.
x+\frac{1}{2}=\frac{\sqrt{7}i}{2} x+\frac{1}{2}=-\frac{\sqrt{7}i}{2}
Поедноставување.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
Одземање на \frac{1}{2} од двете страни на равенката.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}