Реши за x
x = -\frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx -1,042427968
x = \frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx 1,042427968
x=\frac{\sqrt{81-3\sqrt{633}}}{12}\approx 0,195816067
x=-\frac{\sqrt{81-3\sqrt{633}}}{12}\approx -0,195816067
Графика
Сподели
Копирани во клипбордот
24x^{2}x^{2}+1=27x^{2}
Променливата x не може да биде еднаква на 0 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со x^{2}.
24x^{4}+1=27x^{2}
За да множите степени со иста основа, соберете ги нивните степенови показатели. Соберете ги 2 и 2 за да добиете 4.
24x^{4}+1-27x^{2}=0
Одземете 27x^{2} од двете страни.
24t^{2}-27t+1=0
Заменете го t со x^{2}.
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 24\times 1}}{2\times 24}
Сите равенки во обликот ax^{2}+bx+c=0 може да се решат со помош на квадратна формула: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заменете ги 24 со a, -27 со b и 1 со c во квадратната формула.
t=\frac{27±\sqrt{633}}{48}
Пресметајте.
t=\frac{\sqrt{633}}{48}+\frac{9}{16} t=-\frac{\sqrt{633}}{48}+\frac{9}{16}
Решете ја равенката t=\frac{27±\sqrt{633}}{48} кога ± е плус и кога ± е минус.
x=\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4}
Бидејќи x=t^{2}, решенијата се добиваат со пресметување на x=±\sqrt{t} за секоја вредност на t.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}