Реши за x
x=3
Графика
Сподели
Копирани во клипбордот
x^{2}-6x+9=0
Поделете ги двете страни со 2.
a+b=-6 ab=1\times 9=9
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како x^{2}+ax+bx+9. За да ги најдете a и b, поставете систем за решавање.
-1,-9 -3,-3
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е негативно, и a и b се негативни. Наведете ги сите парови цели броеви што даваат производ 9.
-1-9=-10 -3-3=-6
Пресметајте го збирот за секој пар.
a=-3 b=-3
Решението е парот што дава збир -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Препиши го x^{2}-6x+9 како \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Исклучете го факторот x во првата група и -3 во втората група.
\left(x-3\right)\left(x-3\right)
Факторирај го заедничкиот термин x-3 со помош на дистрибутивно својство.
\left(x-3\right)^{2}
Препишување како биномен квадрат.
x=3
За да најдете решение за равенката, решете ја x-3=0.
2x^{2}-12x+18=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 2 за a, -12 за b и 18 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
Квадрат од -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
Множење на -4 со 2.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
Множење на -8 со 18.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
Собирање на 144 и -144.
x=-\frac{-12}{2\times 2}
Вадење квадратен корен од 0.
x=\frac{12}{2\times 2}
Спротивно на -12 е 12.
x=\frac{12}{4}
Множење на 2 со 2.
x=3
Делење на 12 со 4.
2x^{2}-12x+18=0
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
2x^{2}-12x+18-18=-18
Одземање на 18 од двете страни на равенката.
2x^{2}-12x=-18
Ако одземете 18 од истиот број, ќе остане 0.
\frac{2x^{2}-12x}{2}=-\frac{18}{2}
Поделете ги двете страни со 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{18}{2}
Ако поделите со 2, ќе се врати множењето со 2.
x^{2}-6x=-\frac{18}{2}
Делење на -12 со 2.
x^{2}-6x=-9
Делење на -18 со 2.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Поделете го -6, коефициентот на членот x, со 2 за да добиете -3. Потоа додајте го квадратот од -3 на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-6x+9=-9+9
Квадрат од -3.
x^{2}-6x+9=0
Собирање на -9 и 9.
\left(x-3\right)^{2}=0
Фактор x^{2}-6x+9. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Извадете квадратен корен од двете страни на равенката.
x-3=0 x-3=0
Поедноставување.
x=3 x=3
Додавање на 3 на двете страни на равенката.
x=3
Равенката сега е решена. Решенијата се исти.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}