Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

a+b=5 ab=2\left(-7\right)=-14
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како 2x^{2}+ax+bx-7. За да ги најдете a и b, поставете систем за решавање.
-1,14 -2,7
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е позитивно, позитивниот број има поголема апсолутна вредност од негативниот. Наведете ги сите парови цели броеви што даваат производ -14.
-1+14=13 -2+7=5
Пресметајте го збирот за секој пар.
a=-2 b=7
Решението е парот што дава збир 5.
\left(2x^{2}-2x\right)+\left(7x-7\right)
Препиши го 2x^{2}+5x-7 како \left(2x^{2}-2x\right)+\left(7x-7\right).
2x\left(x-1\right)+7\left(x-1\right)
Исклучете го факторот 2x во првата група и 7 во втората група.
\left(x-1\right)\left(2x+7\right)
Факторирај го заедничкиот термин x-1 со помош на дистрибутивно својство.
x=1 x=-\frac{7}{2}
За да најдете решенија за равенката, решете ги x-1=0 и 2x+7=0.
2x^{2}+5x-7=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-7\right)}}{2\times 2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 2 за a, 5 за b и -7 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\left(-7\right)}}{2\times 2}
Квадрат од 5.
x=\frac{-5±\sqrt{25-8\left(-7\right)}}{2\times 2}
Множење на -4 со 2.
x=\frac{-5±\sqrt{25+56}}{2\times 2}
Множење на -8 со -7.
x=\frac{-5±\sqrt{81}}{2\times 2}
Собирање на 25 и 56.
x=\frac{-5±9}{2\times 2}
Вадење квадратен корен од 81.
x=\frac{-5±9}{4}
Множење на 2 со 2.
x=\frac{4}{4}
Сега решете ја равенката x=\frac{-5±9}{4} кога ± ќе биде плус. Собирање на -5 и 9.
x=1
Делење на 4 со 4.
x=-\frac{14}{4}
Сега решете ја равенката x=\frac{-5±9}{4} кога ± ќе биде минус. Одземање на 9 од -5.
x=-\frac{7}{2}
Намалете ја дропката \frac{-14}{4} до најниските услови со извлекување и откажување на 2.
x=1 x=-\frac{7}{2}
Равенката сега е решена.
2x^{2}+5x-7=0
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
2x^{2}+5x-7-\left(-7\right)=-\left(-7\right)
Додавање на 7 на двете страни на равенката.
2x^{2}+5x=-\left(-7\right)
Ако одземете -7 од истиот број, ќе остане 0.
2x^{2}+5x=7
Одземање на -7 од 0.
\frac{2x^{2}+5x}{2}=\frac{7}{2}
Поделете ги двете страни со 2.
x^{2}+\frac{5}{2}x=\frac{7}{2}
Ако поделите со 2, ќе се врати множењето со 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{7}{2}+\left(\frac{5}{4}\right)^{2}
Поделете го \frac{5}{2}, коефициентот на членот x, со 2 за да добиете \frac{5}{4}. Потоа додајте го квадратот од \frac{5}{4} на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{7}{2}+\frac{25}{16}
Кренете \frac{5}{4} на квадрат со кревање и на броителот и на именителот на дропката на квадрат.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{81}{16}
Соберете ги \frac{7}{2} и \frac{25}{16} со наоѓање на заедничкиот именител и собирање на броителите. Потоа намалете ја дропката на најмалите членови ако е можно.
\left(x+\frac{5}{4}\right)^{2}=\frac{81}{16}
Фактор x^{2}+\frac{5}{2}x+\frac{25}{16}. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Извадете квадратен корен од двете страни на равенката.
x+\frac{5}{4}=\frac{9}{4} x+\frac{5}{4}=-\frac{9}{4}
Поедноставување.
x=1 x=-\frac{7}{2}
Одземање на \frac{5}{4} од двете страни на равенката.