Реши за k
k = -\frac{4 \sqrt{5}}{5} \approx -1,788854382
k = \frac{4 \sqrt{5}}{5} \approx 1,788854382
Сподели
Копирани во клипбордот
1296=200k^{2}+25k^{4}+400
Користете го дистрибутивното својство за да помножите k^{2}+4 со 100+25k^{2} и да ги комбинирате сличните термини.
200k^{2}+25k^{4}+400=1296
Заменете ги страните така што сите променливи членови да се наоѓаат на левата страна.
200k^{2}+25k^{4}+400-1296=0
Одземете 1296 од двете страни.
200k^{2}+25k^{4}-896=0
Одземете 1296 од 400 за да добиете -896.
25t^{2}+200t-896=0
Заменете го t со k^{2}.
t=\frac{-200±\sqrt{200^{2}-4\times 25\left(-896\right)}}{2\times 25}
Сите равенки во обликот ax^{2}+bx+c=0 може да се решат со помош на квадратна формула: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заменете ги 25 со a, 200 со b и -896 со c во квадратната формула.
t=\frac{-200±360}{50}
Пресметајте.
t=\frac{16}{5} t=-\frac{56}{5}
Решете ја равенката t=\frac{-200±360}{50} кога ± е плус и кога ± е минус.
k=\frac{4\sqrt{5}}{5} k=-\frac{4\sqrt{5}}{5}
Бидејќи k=t^{2}, решенијата се добиваат со пресметување на k=±\sqrt{t} за секоја позитивна вредност на t.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}