Реши за x
x=-2+\frac{126}{x_{2}}
x_{2}\neq 0
Реши за x_2
x_{2}=\frac{126}{x+2}
x\neq -2
Графика
Сподели
Копирани во клипбордот
x_{2}x+2x_{2}=126
Користете го дистрибутивното својство за да помножите x_{2} со x+2.
x_{2}x=126-2x_{2}
Одземете 2x_{2} од двете страни.
\frac{x_{2}x}{x_{2}}=\frac{126-2x_{2}}{x_{2}}
Поделете ги двете страни со x_{2}.
x=\frac{126-2x_{2}}{x_{2}}
Ако поделите со x_{2}, ќе се врати множењето со x_{2}.
x=-2+\frac{126}{x_{2}}
Делење на 126-2x_{2} со x_{2}.
x_{2}x+2x_{2}=126
Користете го дистрибутивното својство за да помножите x_{2} со x+2.
\left(x+2\right)x_{2}=126
Комбинирајте ги сите членови што содржат x_{2}.
\frac{\left(x+2\right)x_{2}}{x+2}=\frac{126}{x+2}
Поделете ги двете страни со x+2.
x_{2}=\frac{126}{x+2}
Ако поделите со x+2, ќе се врати множењето со x+2.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}