Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

\left(4-x\right)^{2}=9
Помножете 4-x и 4-x за да добиете \left(4-x\right)^{2}.
16-8x+x^{2}=9
Користете ја биномната теорема \left(a-b\right)^{2}=a^{2}-2ab+b^{2} за проширување на \left(4-x\right)^{2}.
16-8x+x^{2}-9=0
Одземете 9 од двете страни.
7-8x+x^{2}=0
Одземете 9 од 16 за да добиете 7.
x^{2}-8x+7=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -8 за b и 7 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Квадрат од -8.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Множење на -4 со 7.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Собирање на 64 и -28.
x=\frac{-\left(-8\right)±6}{2}
Вадење квадратен корен од 36.
x=\frac{8±6}{2}
Спротивно на -8 е 8.
x=\frac{14}{2}
Сега решете ја равенката x=\frac{8±6}{2} кога ± ќе биде плус. Собирање на 8 и 6.
x=7
Делење на 14 со 2.
x=\frac{2}{2}
Сега решете ја равенката x=\frac{8±6}{2} кога ± ќе биде минус. Одземање на 6 од 8.
x=1
Делење на 2 со 2.
x=7 x=1
Равенката сега е решена.
\left(4-x\right)^{2}=9
Помножете 4-x и 4-x за да добиете \left(4-x\right)^{2}.
16-8x+x^{2}=9
Користете ја биномната теорема \left(a-b\right)^{2}=a^{2}-2ab+b^{2} за проширување на \left(4-x\right)^{2}.
-8x+x^{2}=9-16
Одземете 16 од двете страни.
-8x+x^{2}=-7
Одземете 16 од 9 за да добиете -7.
x^{2}-8x=-7
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Поделете го -8, коефициентот на членот x, со 2 за да добиете -4. Потоа додајте го квадратот од -4 на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-8x+16=-7+16
Квадрат од -4.
x^{2}-8x+16=9
Собирање на -7 и 16.
\left(x-4\right)^{2}=9
Фактор x^{2}-8x+16. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Извадете квадратен корен од двете страни на равенката.
x-4=3 x-4=-3
Поедноставување.
x=7 x=1
Додавање на 4 на двете страни на равенката.