Прескокни до главната содржина
Процени
Tick mark Image
Диференцирај во однос на x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}}
Користете ги правилата за степенови показатели за да го поедноставите изразот.
x^{\frac{7}{5}\left(-\frac{5}{3}\right)}
За да го подигнете степенот на друг степен, помножете ги степеновите показатели.
\frac{1}{x^{\frac{7}{3}}}
Помножете \frac{7}{5} со -\frac{5}{3} со множење на броителот со броителот и именителот со именителот. Потоа намалете ја дропката на најмалите членови ако е можно.
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{7}{5}})
Ако F се состои од две диференцијални функции f\left(u\right) и u=g\left(x\right), односно, ако F\left(x\right)=f\left(g\left(x\right)\right), тогаш дериватот на F е дериват на f во однос на u помножено со дериватот на g во однос на x, односно, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}\times \frac{7}{5}x^{\frac{7}{5}-1}
Дериватот на полиномот е збир на дериватите од неговите членови. Дериватот на константниот член е 0. Дериватот на ax^{n} е nax^{n-1}.
-\frac{7}{3}x^{\frac{2}{5}}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}
Поедноставување.