Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

x^{2}+10x+25=0
Користете ја биномната теорема \left(a+b\right)^{2}=a^{2}+2ab+b^{2} за проширување на \left(x+5\right)^{2}.
a+b=10 ab=25
За да ја решите равенката, факторирајте x^{2}+10x+25 со помош на формулата x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да ги најдете a и b, поставете систем за решавање.
1,25 5,5
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Наведете ги сите парови цели броеви што даваат производ 25.
1+25=26 5+5=10
Пресметајте го збирот за секој пар.
a=5 b=5
Решението е парот што дава збир 10.
\left(x+5\right)\left(x+5\right)
Препишете го факторираниот израз \left(x+a\right)\left(x+b\right) со помош на добиените вредности.
\left(x+5\right)^{2}
Препишување како биномен квадрат.
x=-5
За да најдете решение за равенката, решете ја x+5=0.
x^{2}+10x+25=0
Користете ја биномната теорема \left(a+b\right)^{2}=a^{2}+2ab+b^{2} за проширување на \left(x+5\right)^{2}.
a+b=10 ab=1\times 25=25
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како x^{2}+ax+bx+25. За да ги најдете a и b, поставете систем за решавање.
1,25 5,5
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Наведете ги сите парови цели броеви што даваат производ 25.
1+25=26 5+5=10
Пресметајте го збирот за секој пар.
a=5 b=5
Решението е парот што дава збир 10.
\left(x^{2}+5x\right)+\left(5x+25\right)
Препиши го x^{2}+10x+25 како \left(x^{2}+5x\right)+\left(5x+25\right).
x\left(x+5\right)+5\left(x+5\right)
Исклучете го факторот x во првата група и 5 во втората група.
\left(x+5\right)\left(x+5\right)
Факторирај го заедничкиот термин x+5 со помош на дистрибутивно својство.
\left(x+5\right)^{2}
Препишување како биномен квадрат.
x=-5
За да најдете решение за равенката, решете ја x+5=0.
x^{2}+10x+25=0
Користете ја биномната теорема \left(a+b\right)^{2}=a^{2}+2ab+b^{2} за проширување на \left(x+5\right)^{2}.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, 10 за b и 25 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
Квадрат од 10.
x=\frac{-10±\sqrt{100-100}}{2}
Множење на -4 со 25.
x=\frac{-10±\sqrt{0}}{2}
Собирање на 100 и -100.
x=-\frac{10}{2}
Вадење квадратен корен од 0.
x=-5
Делење на -10 со 2.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
Извадете квадратен корен од двете страни на равенката.
x+5=0 x+5=0
Поедноставување.
x=-5 x=-5
Одземање на 5 од двете страни на равенката.
x=-5
Равенката сега е решена. Решенијата се исти.