Прескокни до главната содржина
Реши за x
Tick mark Image
Реши за x (complex solution)
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

5825^{x-3}=120
Користете ги правилата за степенови показатели и логаритми за да ја решите равенката.
\log(5825^{x-3})=\log(120)
Пресметување на логаритамот од двете страни на равенката.
\left(x-3\right)\log(5825)=\log(120)
Логаритамот на бројот подигнат на степен е степенот помножен со логаритамот на бројот.
x-3=\frac{\log(120)}{\log(5825)}
Поделете ги двете страни со \log(5825).
x-3=\log_{5825}\left(120\right)
Со формулата за измена на основата \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\log_{5825}\left(120\right)-\left(-3\right)
Додавање на 3 на двете страни на равенката.