Процени
\frac{1}{8ba^{4}}
Прошири
\frac{1}{8ba^{4}}
Квиз
Algebra
5 проблеми слични на:
( \frac { 4 a } { b } ) ^ { - 4 } \div ( \frac { 1 } { 2 } b ) ^ { 5 }
Сподели
Копирани во клипбордот
\frac{\frac{\left(4a\right)^{-4}}{b^{-4}}}{\left(\frac{1}{2}b\right)^{5}}
За да се подигне \frac{4a}{b} на степен, подигнете ги и броителот и именителот на тој степен и потоа поделете.
\frac{\frac{\left(4a\right)^{-4}}{b^{-4}}}{\left(\frac{1}{2}\right)^{5}b^{5}}
Зголемување на \left(\frac{1}{2}b\right)^{5}.
\frac{\frac{\left(4a\right)^{-4}}{b^{-4}}}{\frac{1}{32}b^{5}}
Пресметајте колку е \frac{1}{2} на степен од 5 и добијте \frac{1}{32}.
\frac{\left(4a\right)^{-4}}{b^{-4}\times \frac{1}{32}b^{5}}
Изразете ја \frac{\frac{\left(4a\right)^{-4}}{b^{-4}}}{\frac{1}{32}b^{5}} како една дропка.
\frac{4^{-4}a^{-4}}{b^{-4}\times \frac{1}{32}b^{5}}
Зголемување на \left(4a\right)^{-4}.
\frac{\frac{1}{256}a^{-4}}{b^{-4}\times \frac{1}{32}b^{5}}
Пресметајте колку е 4 на степен од -4 и добијте \frac{1}{256}.
\frac{\frac{1}{256}a^{-4}}{b^{1}\times \frac{1}{32}}
За да множите степени со иста основа, соберете ги нивните степенови показатели. Соберете ги -4 и 5 за да добиете 1.
\frac{\frac{1}{256}a^{-4}}{b\times \frac{1}{32}}
Пресметајте колку е b на степен од 1 и добијте b.
\frac{\frac{\left(4a\right)^{-4}}{b^{-4}}}{\left(\frac{1}{2}b\right)^{5}}
За да се подигне \frac{4a}{b} на степен, подигнете ги и броителот и именителот на тој степен и потоа поделете.
\frac{\frac{\left(4a\right)^{-4}}{b^{-4}}}{\left(\frac{1}{2}\right)^{5}b^{5}}
Зголемување на \left(\frac{1}{2}b\right)^{5}.
\frac{\frac{\left(4a\right)^{-4}}{b^{-4}}}{\frac{1}{32}b^{5}}
Пресметајте колку е \frac{1}{2} на степен од 5 и добијте \frac{1}{32}.
\frac{\left(4a\right)^{-4}}{b^{-4}\times \frac{1}{32}b^{5}}
Изразете ја \frac{\frac{\left(4a\right)^{-4}}{b^{-4}}}{\frac{1}{32}b^{5}} како една дропка.
\frac{4^{-4}a^{-4}}{b^{-4}\times \frac{1}{32}b^{5}}
Зголемување на \left(4a\right)^{-4}.
\frac{\frac{1}{256}a^{-4}}{b^{-4}\times \frac{1}{32}b^{5}}
Пресметајте колку е 4 на степен од -4 и добијте \frac{1}{256}.
\frac{\frac{1}{256}a^{-4}}{b^{1}\times \frac{1}{32}}
За да множите степени со иста основа, соберете ги нивните степенови показатели. Соберете ги -4 и 5 за да добиете 1.
\frac{\frac{1}{256}a^{-4}}{b\times \frac{1}{32}}
Пресметајте колку е b на степен од 1 и добијте b.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}