Процени
\frac{18\sqrt{2}+163}{25921}\approx 0,007270393
Прошири
\frac{18 \sqrt{2} + 163}{25921} = 0,007270392505023561
Сподели
Копирани во клипбордот
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Рационализирајте го именителот на \frac{\sqrt{2}}{\sqrt{2}-18} со множење на броителот и именителот со \sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Запомнете, \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Множењето може да се трансформира во разлика од квадратите со помош на правилото: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Квадрат од \sqrt{2}. Квадрат од 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Одземете 324 од 2 за да добиете -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
За да се подигне \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} на степен, подигнете ги и броителот и именителот на тој степен и потоа поделете.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Зголемување на \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Квадрат на \sqrt{2} е 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Користете ја биномната теорема \left(a+b\right)^{2}=a^{2}+2ab+b^{2} за проширување на \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Квадрат на \sqrt{2} е 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Соберете 2 и 324 за да добиете 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Пресметајте колку е -322 на степен од 2 и добијте 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Поделете 2\left(326+36\sqrt{2}\right) со 103684 за да добиете \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Користете го дистрибутивното својство за да помножите \frac{1}{51842} со 326+36\sqrt{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Рационализирајте го именителот на \frac{\sqrt{2}}{\sqrt{2}-18} со множење на броителот и именителот со \sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Запомнете, \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Множењето може да се трансформира во разлика од квадратите со помош на правилото: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Квадрат од \sqrt{2}. Квадрат од 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Одземете 324 од 2 за да добиете -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
За да се подигне \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} на степен, подигнете ги и броителот и именителот на тој степен и потоа поделете.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Зголемување на \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Квадрат на \sqrt{2} е 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Користете ја биномната теорема \left(a+b\right)^{2}=a^{2}+2ab+b^{2} за проширување на \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Квадрат на \sqrt{2} е 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Соберете 2 и 324 за да добиете 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Пресметајте колку е -322 на степен од 2 и добијте 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Поделете 2\left(326+36\sqrt{2}\right) со 103684 за да добиете \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Користете го дистрибутивното својство за да помножите \frac{1}{51842} со 326+36\sqrt{2}.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}