Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

x\left(x-9\right)=0
Исклучување на вредноста на факторот x.
x=0 x=9
За да најдете решенија за равенката, решете ги x=0 и x-9=0.
x^{2}-9x=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -9 за b и 0 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±9}{2}
Вадење квадратен корен од \left(-9\right)^{2}.
x=\frac{9±9}{2}
Спротивно на -9 е 9.
x=\frac{18}{2}
Сега решете ја равенката x=\frac{9±9}{2} кога ± ќе биде плус. Собирање на 9 и 9.
x=9
Делење на 18 со 2.
x=\frac{0}{2}
Сега решете ја равенката x=\frac{9±9}{2} кога ± ќе биде минус. Одземање на 9 од 9.
x=0
Делење на 0 со 2.
x=9 x=0
Равенката сега е решена.
x^{2}-9x=0
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=\left(-\frac{9}{2}\right)^{2}
Поделете го -9, коефициентот на членот x, со 2 за да добиете -\frac{9}{2}. Потоа додајте го квадратот од -\frac{9}{2} на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-9x+\frac{81}{4}=\frac{81}{4}
Кренете -\frac{9}{2} на квадрат со кревање и на броителот и на именителот на дропката на квадрат.
\left(x-\frac{9}{2}\right)^{2}=\frac{81}{4}
Фактор x^{2}-9x+\frac{81}{4}. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Извадете квадратен корен од двете страни на равенката.
x-\frac{9}{2}=\frac{9}{2} x-\frac{9}{2}=-\frac{9}{2}
Поедноставување.
x=9 x=0
Додавање на \frac{9}{2} на двете страни на равенката.