Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

a+b=-11 ab=1\left(-26\right)=-26
Факторирајте го изразот со групирање. Прво, изразот треба да се препише како x^{2}+ax+bx-26. За да ги најдете a и b, поставете систем за решавање.
1,-26 2,-13
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е негативно, негативниот број има поголема апсолутна вредност од позитивниот. Наведете ги сите парови цели броеви што даваат производ -26.
1-26=-25 2-13=-11
Пресметајте го збирот за секој пар.
a=-13 b=2
Решението е парот што дава збир -11.
\left(x^{2}-13x\right)+\left(2x-26\right)
Препиши го x^{2}-11x-26 како \left(x^{2}-13x\right)+\left(2x-26\right).
x\left(x-13\right)+2\left(x-13\right)
Исклучете го факторот x во првата група и 2 во втората група.
\left(x-13\right)\left(x+2\right)
Факторирај го заедничкиот термин x-13 со помош на дистрибутивно својство.
x^{2}-11x-26=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-26\right)}}{2}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-26\right)}}{2}
Квадрат од -11.
x=\frac{-\left(-11\right)±\sqrt{121+104}}{2}
Множење на -4 со -26.
x=\frac{-\left(-11\right)±\sqrt{225}}{2}
Собирање на 121 и 104.
x=\frac{-\left(-11\right)±15}{2}
Вадење квадратен корен од 225.
x=\frac{11±15}{2}
Спротивно на -11 е 11.
x=\frac{26}{2}
Сега решете ја равенката x=\frac{11±15}{2} кога ± ќе биде плус. Собирање на 11 и 15.
x=13
Делење на 26 со 2.
x=-\frac{4}{2}
Сега решете ја равенката x=\frac{11±15}{2} кога ± ќе биде минус. Одземање на 15 од 11.
x=-2
Делење на -4 со 2.
x^{2}-11x-26=\left(x-13\right)\left(x-\left(-2\right)\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го 13 со x_{1} и -2 со x_{2}.
x^{2}-11x-26=\left(x-13\right)\left(x+2\right)
Поедноставете ги сите изрази на формуларот p-\left(-q\right) со p+q.