Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

a+b=1 ab=1\left(-12\right)=-12
Факторирајте го изразот со групирање. Прво, изразот треба да се препише како x^{2}+ax+bx-12. За да ги најдете a и b, поставете систем за решавање.
-1,12 -2,6 -3,4
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е позитивно, позитивниот број има поголема апсолутна вредност од негативниот. Наведете ги сите парови цели броеви што даваат производ -12.
-1+12=11 -2+6=4 -3+4=1
Пресметајте го збирот за секој пар.
a=-3 b=4
Решението е парот што дава збир 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
Препиши го x^{2}+x-12 како \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
Исклучете го факторот x во првата група и 4 во втората група.
\left(x-3\right)\left(x+4\right)
Факторирај го заедничкиот термин x-3 со помош на дистрибутивно својство.
x^{2}+x-12=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
Квадрат од 1.
x=\frac{-1±\sqrt{1+48}}{2}
Множење на -4 со -12.
x=\frac{-1±\sqrt{49}}{2}
Собирање на 1 и 48.
x=\frac{-1±7}{2}
Вадење квадратен корен од 49.
x=\frac{6}{2}
Сега решете ја равенката x=\frac{-1±7}{2} кога ± ќе биде плус. Собирање на -1 и 7.
x=3
Делење на 6 со 2.
x=-\frac{8}{2}
Сега решете ја равенката x=\frac{-1±7}{2} кога ± ќе биде минус. Одземање на 7 од -1.
x=-4
Делење на -8 со 2.
x^{2}+x-12=\left(x-3\right)\left(x-\left(-4\right)\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го 3 со x_{1} и -4 со x_{2}.
x^{2}+x-12=\left(x-3\right)\left(x+4\right)
Поедноставете ги сите изрази на формуларот p-\left(-q\right) со p+q.