Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

a+b=11 ab=28
За да ја решите равенката, факторирајте x^{2}+11x+28 со помош на формулата x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да ги најдете a и b, поставете систем за решавање.
1,28 2,14 4,7
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Наведете ги сите парови цели броеви што даваат производ 28.
1+28=29 2+14=16 4+7=11
Пресметајте го збирот за секој пар.
a=4 b=7
Решението е парот што дава збир 11.
\left(x+4\right)\left(x+7\right)
Препишете го факторираниот израз \left(x+a\right)\left(x+b\right) со помош на добиените вредности.
x=-4 x=-7
За да најдете решенија за равенката, решете ги x+4=0 и x+7=0.
a+b=11 ab=1\times 28=28
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како x^{2}+ax+bx+28. За да ги најдете a и b, поставете систем за решавање.
1,28 2,14 4,7
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Наведете ги сите парови цели броеви што даваат производ 28.
1+28=29 2+14=16 4+7=11
Пресметајте го збирот за секој пар.
a=4 b=7
Решението е парот што дава збир 11.
\left(x^{2}+4x\right)+\left(7x+28\right)
Препиши го x^{2}+11x+28 како \left(x^{2}+4x\right)+\left(7x+28\right).
x\left(x+4\right)+7\left(x+4\right)
Исклучете го факторот x во првата група и 7 во втората група.
\left(x+4\right)\left(x+7\right)
Факторирај го заедничкиот термин x+4 со помош на дистрибутивно својство.
x=-4 x=-7
За да најдете решенија за равенката, решете ги x+4=0 и x+7=0.
x^{2}+11x+28=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-11±\sqrt{11^{2}-4\times 28}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, 11 за b и 28 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 28}}{2}
Квадрат од 11.
x=\frac{-11±\sqrt{121-112}}{2}
Множење на -4 со 28.
x=\frac{-11±\sqrt{9}}{2}
Собирање на 121 и -112.
x=\frac{-11±3}{2}
Вадење квадратен корен од 9.
x=-\frac{8}{2}
Сега решете ја равенката x=\frac{-11±3}{2} кога ± ќе биде плус. Собирање на -11 и 3.
x=-4
Делење на -8 со 2.
x=-\frac{14}{2}
Сега решете ја равенката x=\frac{-11±3}{2} кога ± ќе биде минус. Одземање на 3 од -11.
x=-7
Делење на -14 со 2.
x=-4 x=-7
Равенката сега е решена.
x^{2}+11x+28=0
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
x^{2}+11x+28-28=-28
Одземање на 28 од двете страни на равенката.
x^{2}+11x=-28
Ако одземете 28 од истиот број, ќе остане 0.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-28+\left(\frac{11}{2}\right)^{2}
Поделете го 11, коефициентот на членот x, со 2 за да добиете \frac{11}{2}. Потоа додајте го квадратот од \frac{11}{2} на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}+11x+\frac{121}{4}=-28+\frac{121}{4}
Кренете \frac{11}{2} на квадрат со кревање и на броителот и на именителот на дропката на квадрат.
x^{2}+11x+\frac{121}{4}=\frac{9}{4}
Собирање на -28 и \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{9}{4}
Фактор x^{2}+11x+\frac{121}{4}. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Извадете квадратен корен од двете страни на равенката.
x+\frac{11}{2}=\frac{3}{2} x+\frac{11}{2}=-\frac{3}{2}
Поедноставување.
x=-4 x=-7
Одземање на \frac{11}{2} од двете страни на равенката.