Реши за x
x=8
Графика
Сподели
Копирани во клипбордот
\left(\sqrt{x+1}\right)^{2}=\left(x-5\right)^{2}
Кревање на двете страни на равенката на квадрат.
x+1=\left(x-5\right)^{2}
Пресметајте колку е \sqrt{x+1} на степен од 2 и добијте x+1.
x+1=x^{2}-10x+25
Користете ја биномната теорема \left(a-b\right)^{2}=a^{2}-2ab+b^{2} за проширување на \left(x-5\right)^{2}.
x+1-x^{2}=-10x+25
Одземете x^{2} од двете страни.
x+1-x^{2}+10x=25
Додај 10x на двете страни.
11x+1-x^{2}=25
Комбинирајте x и 10x за да добиете 11x.
11x+1-x^{2}-25=0
Одземете 25 од двете страни.
11x-24-x^{2}=0
Одземете 25 од 1 за да добиете -24.
-x^{2}+11x-24=0
Прераспоредете го полиномот за да го ставите во стандардна форма. Распоредете ги членовите почнувајќи од највисокиот да најнискиот степен.
a+b=11 ab=-\left(-24\right)=24
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како -x^{2}+ax+bx-24. За да ги најдете a и b, поставете систем за решавање.
1,24 2,12 3,8 4,6
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Наведете ги сите парови цели броеви што даваат производ 24.
1+24=25 2+12=14 3+8=11 4+6=10
Пресметајте го збирот за секој пар.
a=8 b=3
Решението е парот што дава збир 11.
\left(-x^{2}+8x\right)+\left(3x-24\right)
Препиши го -x^{2}+11x-24 како \left(-x^{2}+8x\right)+\left(3x-24\right).
-x\left(x-8\right)+3\left(x-8\right)
Исклучете го факторот -x во првата група и 3 во втората група.
\left(x-8\right)\left(-x+3\right)
Факторирај го заедничкиот термин x-8 со помош на дистрибутивно својство.
x=8 x=3
За да најдете решенија за равенката, решете ги x-8=0 и -x+3=0.
\sqrt{8+1}=8-5
Заменете го 8 со x во равенката \sqrt{x+1}=x-5.
3=3
Поедноставување. Вредноста x=8 одговара на равенката.
\sqrt{3+1}=3-5
Заменете го 3 со x во равенката \sqrt{x+1}=x-5.
2=-2
Поедноставување. Вредноста x=3 не одговара на равенката бидејќи од левата и од десната страна има спротивни знаци.
x=8
Равенката \sqrt{x+1}=x-5 има единствено решение.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}