\left( \begin{array} { l l l } { 4 } & { 5 } & { 6 } \\ { 1 } & { 9 } & { 7 } \\ { 4 } & { 9 } & { 5 } \end{array} \right)
Пресметај ја детерминантата
-119
Процени
\left(\begin{matrix}4&5&6\\1&9&7\\4&9&5\end{matrix}\right)
Сподели
Копирани во клипбордот
det(\left(\begin{matrix}4&5&6\\1&9&7\\4&9&5\end{matrix}\right))
Најдете ја детерминантата на матрицата со помош на методот со дијагонали.
\left(\begin{matrix}4&5&6&4&5\\1&9&7&1&9\\4&9&5&4&9\end{matrix}\right)
Проширете ја оригиналната матрица со повторување на првите две колони како четврта и петта колона.
4\times 9\times 5+5\times 7\times 4+6\times 9=374
Почнувајќи од погорниот лев ентитет, множете надолу по дијагоналите и соберете ги добиените производи.
4\times 9\times 6+9\times 7\times 4+5\times 5=493
Почнувајќи од подолниот лев ентитет, множете нагоре по дијагоналите и соберете ги добиените производи.
374-493
Одземете го збирот на нагорните дијагонални производи од збирот на надолните дијагонални производи.
-119
Одземање на 493 од 374.
det(\left(\begin{matrix}4&5&6\\1&9&7\\4&9&5\end{matrix}\right))
Најдете ја детерминантата на матрицата со помош на методот со проширување по минори (познато и како проширување по кофактори).
4det(\left(\begin{matrix}9&7\\9&5\end{matrix}\right))-5det(\left(\begin{matrix}1&7\\4&5\end{matrix}\right))+6det(\left(\begin{matrix}1&9\\4&9\end{matrix}\right))
За да проширувате по минори, помножете го секој елемент од првиот ред со својот минор, што претставува детерминантата на матрицата 2\times 2 создадена со бришење на редот и колоната што го содржат елементот, а потоа помножете со знакот за положбата на елементот.
4\left(9\times 5-9\times 7\right)-5\left(5-4\times 7\right)+6\left(9-4\times 9\right)
За матрицата 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), детерминантата е ad-bc.
4\left(-18\right)-5\left(-23\right)+6\left(-27\right)
Поедноставување.
-119
Соберете ги членовите за да го добиете крајниот резултат.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}