\left| \begin{array} { c c c } { 2 } & { - 3 } & { - 1 } \\ { 4 } & { - 6 } & { 3 } \\ { - 9 } & { 5 } & { - 4 } \end{array} \right|
Процени
85
Фактор
5\times 17
Сподели
Копирани во клипбордот
det(\left(\begin{matrix}2&-3&-1\\4&-6&3\\-9&5&-4\end{matrix}\right))
Најдете ја детерминантата на матрицата со помош на методот со дијагонали.
\left(\begin{matrix}2&-3&-1&2&-3\\4&-6&3&4&-6\\-9&5&-4&-9&5\end{matrix}\right)
Проширете ја оригиналната матрица со повторување на првите две колони како четврта и петта колона.
2\left(-6\right)\left(-4\right)-3\times 3\left(-9\right)-4\times 5=109
Почнувајќи од погорниот лев ентитет, множете надолу по дијагоналите и соберете ги добиените производи.
-9\left(-6\right)\left(-1\right)+5\times 3\times 2-4\times 4\left(-3\right)=24
Почнувајќи од подолниот лев ентитет, множете нагоре по дијагоналите и соберете ги добиените производи.
109-24
Одземете го збирот на нагорните дијагонални производи од збирот на надолните дијагонални производи.
85
Одземање на 24 од 109.
det(\left(\begin{matrix}2&-3&-1\\4&-6&3\\-9&5&-4\end{matrix}\right))
Најдете ја детерминантата на матрицата со помош на методот со проширување по минори (познато и како проширување по кофактори).
2det(\left(\begin{matrix}-6&3\\5&-4\end{matrix}\right))-\left(-3det(\left(\begin{matrix}4&3\\-9&-4\end{matrix}\right))\right)-det(\left(\begin{matrix}4&-6\\-9&5\end{matrix}\right))
За да проширувате по минори, помножете го секој елемент од првиот ред со својот минор, што претставува детерминантата на матрицата 2\times 2 создадена со бришење на редот и колоната што го содржат елементот, а потоа помножете со знакот за положбата на елементот.
2\left(-6\left(-4\right)-5\times 3\right)-\left(-3\left(4\left(-4\right)-\left(-9\times 3\right)\right)\right)-\left(4\times 5-\left(-9\left(-6\right)\right)\right)
За матрицата 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), детерминантата е ad-bc.
2\times 9-\left(-3\times 11\right)-\left(-34\right)
Поедноставување.
85
Соберете ги членовите за да го добиете крајниот резултат.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}