Прескокни до главната содржина
Процени
Tick mark Image
Диференцирај во однос на x
Tick mark Image

Слични проблеми од Web Search

Сподели

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Користете ја биномната теорема \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} за проширување на \left(x^{2}+2\right)^{3}.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
За да го подигнете степенот на друг степен, помножете ги степеновите показатели. Помножете ги 2 и 3 за да добиете 6.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
За да го подигнете степенот на друг степен, помножете ги степеновите показатели. Помножете ги 2 и 2 за да добиете 4.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Интегрирајте го збирот на термини по термин.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Факторирајте ја константата во секој од термините.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Од \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, замени \int x^{6}\mathrm{d}x со \frac{x^{7}}{7}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Од \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, замени \int x^{4}\mathrm{d}x со \frac{x^{5}}{5}. Множење на 6 со \frac{x^{5}}{5}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
Од \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, замени \int x^{2}\mathrm{d}x со \frac{x^{3}}{3}. Множење на 12 со \frac{x^{3}}{3}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
Најдете го интегралот од 8 користејќи го правилото на табелата на заеднички интеграли \int a\mathrm{d}x=ax.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
Поедноставување.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
Ако F\left(x\right) е антидериват од f\left(x\right), тогаш збирот на сите антидеривати од f\left(x\right) е даден од F\left(x\right)+C. Според тоа, додадете ја константата на интеграција C\in \mathrm{R} во резултатот.