Прескокни до главната содржина
Процени
Tick mark Image

Слични проблеми од Web Search

Сподели

\frac{2\left(5+\sqrt{2}\right)}{\left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right)}
Рационализирајте го именителот на \frac{2}{5-\sqrt{2}} со множење на броителот и именителот со 5+\sqrt{2}.
\frac{2\left(5+\sqrt{2}\right)}{5^{2}-\left(\sqrt{2}\right)^{2}}
Запомнете, \left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right). Множењето може да се трансформира во разлика од квадратите со помош на правилото: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+\sqrt{2}\right)}{25-2}
Квадрат од 5. Квадрат од \sqrt{2}.
\frac{2\left(5+\sqrt{2}\right)}{23}
Одземете 2 од 25 за да добиете 23.
\frac{10+2\sqrt{2}}{23}
Користете го дистрибутивното својство за да помножите 2 со 5+\sqrt{2}.