Прескокни до главната содржина
Реши за y
Tick mark Image
Реши за x (complex solution)
Tick mark Image
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

\left(y+2\right)x^{2}=\left(y-2\right)\left(4^{2}-x\right)
Променливата y не може да биде еднаква на вредностите -2,2 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со \left(y-2\right)\left(y+2\right), најмалиот заеднички содржател на y-2,y+2.
yx^{2}+2x^{2}=\left(y-2\right)\left(4^{2}-x\right)
Користете го дистрибутивното својство за да помножите y+2 со x^{2}.
yx^{2}+2x^{2}=\left(y-2\right)\left(16-x\right)
Пресметајте колку е 4 на степен од 2 и добијте 16.
yx^{2}+2x^{2}=16y-yx-32+2x
Користете го дистрибутивното својство за да помножите y-2 со 16-x.
yx^{2}+2x^{2}-16y=-yx-32+2x
Одземете 16y од двете страни.
yx^{2}+2x^{2}-16y+yx=-32+2x
Додај yx на двете страни.
yx^{2}-16y+yx=-32+2x-2x^{2}
Одземете 2x^{2} од двете страни.
\left(x^{2}-16+x\right)y=-32+2x-2x^{2}
Комбинирајте ги сите членови што содржат y.
\left(x^{2}+x-16\right)y=-2x^{2}+2x-32
Равенката е во стандардна форма.
\frac{\left(x^{2}+x-16\right)y}{x^{2}+x-16}=\frac{-2x^{2}+2x-32}{x^{2}+x-16}
Поделете ги двете страни со x^{2}-16+x.
y=\frac{-2x^{2}+2x-32}{x^{2}+x-16}
Ако поделите со x^{2}-16+x, ќе се врати множењето со x^{2}-16+x.
y=\frac{2\left(-x^{2}+x-16\right)}{x^{2}+x-16}
Делење на -32+2x-2x^{2} со x^{2}-16+x.
y=\frac{2\left(-x^{2}+x-16\right)}{x^{2}+x-16}\text{, }y\neq -2\text{ and }y\neq 2
Променливата y не може да биде еднаква на вредностите -2,2.