Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

x^{2}-3x-4=0
Променливата x не може да биде еднаква на 4 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со x-4.
a+b=-3 ab=-4
За да ја решите равенката, факторирајте x^{2}-3x-4 со помош на формулата x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да ги најдете a и b, поставете систем за решавање.
1,-4 2,-2
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е негативно, негативниот број има поголема апсолутна вредност од позитивниот. Наведете ги сите парови цели броеви што даваат производ -4.
1-4=-3 2-2=0
Пресметајте го збирот за секој пар.
a=-4 b=1
Решението е парот што дава збир -3.
\left(x-4\right)\left(x+1\right)
Препишете го факторираниот израз \left(x+a\right)\left(x+b\right) со помош на добиените вредности.
x=4 x=-1
За да најдете решенија за равенката, решете ги x-4=0 и x+1=0.
x=-1
Променливата x не може да биде еднаква на 4.
x^{2}-3x-4=0
Променливата x не може да биде еднаква на 4 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со x-4.
a+b=-3 ab=1\left(-4\right)=-4
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како x^{2}+ax+bx-4. За да ги најдете a и b, поставете систем за решавање.
1,-4 2,-2
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е негативно, негативниот број има поголема апсолутна вредност од позитивниот. Наведете ги сите парови цели броеви што даваат производ -4.
1-4=-3 2-2=0
Пресметајте го збирот за секој пар.
a=-4 b=1
Решението е парот што дава збир -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Препиши го x^{2}-3x-4 како \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Факторирај го x во x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Факторирај го заедничкиот термин x-4 со помош на дистрибутивно својство.
x=4 x=-1
За да најдете решенија за равенката, решете ги x-4=0 и x+1=0.
x=-1
Променливата x не може да биде еднаква на 4.
x^{2}-3x-4=0
Променливата x не може да биде еднаква на 4 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со x-4.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -3 за b и -4 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
Квадрат од -3.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
Множење на -4 со -4.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
Собирање на 9 и 16.
x=\frac{-\left(-3\right)±5}{2}
Вадење квадратен корен од 25.
x=\frac{3±5}{2}
Спротивно на -3 е 3.
x=\frac{8}{2}
Сега решете ја равенката x=\frac{3±5}{2} кога ± ќе биде плус. Собирање на 3 и 5.
x=4
Делење на 8 со 2.
x=-\frac{2}{2}
Сега решете ја равенката x=\frac{3±5}{2} кога ± ќе биде минус. Одземање на 5 од 3.
x=-1
Делење на -2 со 2.
x=4 x=-1
Равенката сега е решена.
x=-1
Променливата x не може да биде еднаква на 4.
x^{2}-3x-4=0
Променливата x не може да биде еднаква на 4 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со x-4.
x^{2}-3x=4
Додај 4 на двете страни. Секој број собран со нула го дава истиот број.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Поделете го -3, коефициентот на членот x, со 2 за да добиете -\frac{3}{2}. Потоа додајте го квадратот од -\frac{3}{2} на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Кренете -\frac{3}{2} на квадрат со кревање и на броителот и на именителот на дропката на квадрат.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Собирање на 4 и \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Фактор x^{2}-3x+\frac{9}{4}. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Извадете квадратен корен од двете страни на равенката.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Поедноставување.
x=4 x=-1
Додавање на \frac{3}{2} на двете страни на равенката.
x=-1
Променливата x не може да биде еднаква на 4.