Прескокни до главната содржина
Процени
Tick mark Image
Диференцирај во однос на x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

\frac{\left(x^{2}-10\right)\left(x+\sqrt{10}\right)}{\left(x-\sqrt{10}\right)\left(x+\sqrt{10}\right)}
Рационализирајте го именителот на \frac{x^{2}-10}{x-\sqrt{10}} со множење на броителот и именителот со x+\sqrt{10}.
\frac{\left(x^{2}-10\right)\left(x+\sqrt{10}\right)}{x^{2}-\left(\sqrt{10}\right)^{2}}
Запомнете, \left(x-\sqrt{10}\right)\left(x+\sqrt{10}\right). Множењето може да се трансформира во разлика од квадратите со помош на правилото: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x^{2}-10\right)\left(x+\sqrt{10}\right)}{x^{2}-10}
Квадрат на \sqrt{10} е 10.
x+\sqrt{10}
Скратете го x^{2}-10 во броителот и именителот.