Реши за n (complex solution)
n=e^{\frac{Im(x)arg(y)+iRe(x)arg(y)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\times \left(7|y|\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
Реши за x (complex solution)
\left\{\begin{matrix}x=\frac{\ln(y)+\ln(7)}{\ln(n)}+\frac{2\pi n_{1}i}{\ln(n)}\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 0\text{ and }n\neq 1\text{ and }n\neq 0\\x\in \mathrm{C}\text{, }&\left(n=0\text{ and }y=0\right)\text{ or }\left(n=1\text{ and }y=\frac{1}{7}\right)\end{matrix}\right,
Реши за n
\left\{\begin{matrix}n=\left(7y\right)^{\frac{1}{x}}\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }y<0\text{ and }\left(7y\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(\left(7y\right)^{\frac{1}{x}}<0\text{ and }y>0\text{ and }x\neq 0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(x>0\text{ and }y=0\right)\text{ or }\left(\left(7y\right)^{\frac{1}{x}}>0\text{ and }y>0\text{ and }x\neq 0\right)\\n=-\left(7y\right)^{\frac{1}{x}}\text{, }&\left(y<0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(7y\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(y>0\text{ and }x\neq 0\text{ and }\left(7y\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(Numerator(x)\text{bmod}2=0\text{ and }y=0\text{ and }x>0\right)\text{ or }\left(y>0\text{ and }x\neq 0\text{ and }\left(7y\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\right)\\n\neq 0\text{, }&x=0\text{ and }y=\frac{1}{7}\end{matrix}\right,
Реши за x
\left\{\begin{matrix}x=\frac{\ln(y)+\ln(7)}{\ln(n)}\text{, }&y>0\text{ and }n\neq 1\text{ and }n>0\\x\in \mathrm{R}\text{, }&\left(n=1\text{ and }y=\frac{1}{7}\right)\text{ or }\left(n=-1\text{ and }y=-\frac{1}{7}\text{ and }Denominator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=1\right)\\x>0\text{, }&n=0\text{ and }y=0\end{matrix}\right,
Графика
Сподели
Копирани во клипбордот
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}