Реши за a
\left\{\begin{matrix}a=\frac{r}{1-n}\text{, }&r\neq 0\text{ and }n\neq 1\\a\neq 0\text{, }&r=0\text{ and }n=1\end{matrix}\right,
Реши за n
n=\frac{a-r}{a}
a\neq 0
Сподели
Копирани во клипбордот
a-r=an
Променливата a не може да биде еднаква на 0 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со a.
a-r-an=0
Одземете an од двете страни.
a-an=r
Додај r на двете страни. Секој број собран со нула го дава истиот број.
\left(1-n\right)a=r
Комбинирајте ги сите членови што содржат a.
\frac{\left(1-n\right)a}{1-n}=\frac{r}{1-n}
Поделете ги двете страни со 1-n.
a=\frac{r}{1-n}
Ако поделите со 1-n, ќе се врати множењето со 1-n.
a=\frac{r}{1-n}\text{, }a\neq 0
Променливата a не може да биде еднаква на 0.
a-r=an
Помножете ги двете страни на равенката со a.
an=a-r
Заменете ги страните така што сите променливи членови да се наоѓаат на левата страна.
\frac{an}{a}=\frac{a-r}{a}
Поделете ги двете страни со a.
n=\frac{a-r}{a}
Ако поделите со a, ќе се врати множењето со a.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}