Прескокни до главната содржина
Процени
Tick mark Image
Диференцирај во однос на x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

\left(6x^{7}\right)^{1}\times \frac{1}{3x^{4}}
Користете ги правилата за степенови показатели за да го поедноставите изразот.
6^{1}\left(x^{7}\right)^{1}\times \frac{1}{3}\times \frac{1}{x^{4}}
За да го подигнете производот на два или повеќе броеви на степен, подигнете го секој број на степен и помножете ги.
6^{1}\times \frac{1}{3}\left(x^{7}\right)^{1}\times \frac{1}{x^{4}}
Користете го комутативното својство за множење.
6^{1}\times \frac{1}{3}x^{7}x^{4\left(-1\right)}
За да го подигнете степенот на друг степен, помножете ги степеновите показатели.
6^{1}\times \frac{1}{3}x^{7}x^{-4}
Множење на 4 со -1.
6^{1}\times \frac{1}{3}x^{7-4}
За да помножите степени со иста основа, соберете ги нивните степенови показатели.
6^{1}\times \frac{1}{3}x^{3}
Додавање на степеновите показатели 7 и -4.
6\times \frac{1}{3}x^{3}
Подигнување на 6 на степен од 1.
2x^{3}
Множење на 6 со \frac{1}{3}.
\frac{6^{1}x^{7}}{3^{1}x^{4}}
Користете ги правилата за степенови показатели за да го поедноставите изразот.
\frac{6^{1}x^{7-4}}{3^{1}}
За да делите степени со иста основа, одземете го степеновиот показател на именителот од степеновиот показател на броителот.
\frac{6^{1}x^{3}}{3^{1}}
Одземање на 4 од 7.
2x^{3}
Делење на 6 со 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6}{3}x^{7-4})
За да делите степени со иста основа, одземете го степеновиот показател на именителот од степеновиот показател на броителот.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3})
Направете аритметичко пресметување.
3\times 2x^{3-1}
Дериватот на полиномот е збир на дериватите од неговите членови. Дериватот на константниот член е 0. Дериватот на ax^{n} е nax^{n-1}.
6x^{2}
Направете аритметичко пресметување.