Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

\frac{3\sqrt{x}-5}{2}+2=\sqrt{x}
Одземање на -2 од двете страни на равенката.
3\sqrt{x}-5+4=2\sqrt{x}
Помножете ги двете страни на равенката со 2.
3\sqrt{x}-1=2\sqrt{x}
Соберете -5 и 4 за да добиете -1.
\left(3\sqrt{x}-1\right)^{2}=\left(2\sqrt{x}\right)^{2}
Кревање на двете страни на равенката на квадрат.
9\left(\sqrt{x}\right)^{2}-6\sqrt{x}+1=\left(2\sqrt{x}\right)^{2}
Користете ја биномната теорема \left(a-b\right)^{2}=a^{2}-2ab+b^{2} за проширување на \left(3\sqrt{x}-1\right)^{2}.
9x-6\sqrt{x}+1=\left(2\sqrt{x}\right)^{2}
Пресметајте колку е \sqrt{x} на степен од 2 и добијте x.
9x-6\sqrt{x}+1=2^{2}\left(\sqrt{x}\right)^{2}
Зголемување на \left(2\sqrt{x}\right)^{2}.
9x-6\sqrt{x}+1=4\left(\sqrt{x}\right)^{2}
Пресметајте колку е 2 на степен од 2 и добијте 4.
9x-6\sqrt{x}+1=4x
Пресметајте колку е \sqrt{x} на степен од 2 и добијте x.
-6\sqrt{x}=4x-\left(9x+1\right)
Одземање на 9x+1 од двете страни на равенката.
-6\sqrt{x}=4x-9x-1
За да го најдете спротивното на 9x+1, најдете го спротивното на секој термин.
-6\sqrt{x}=-5x-1
Комбинирајте 4x и -9x за да добиете -5x.
\left(-6\sqrt{x}\right)^{2}=\left(-5x-1\right)^{2}
Кревање на двете страни на равенката на квадрат.
\left(-6\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-5x-1\right)^{2}
Зголемување на \left(-6\sqrt{x}\right)^{2}.
36\left(\sqrt{x}\right)^{2}=\left(-5x-1\right)^{2}
Пресметајте колку е -6 на степен од 2 и добијте 36.
36x=\left(-5x-1\right)^{2}
Пресметајте колку е \sqrt{x} на степен од 2 и добијте x.
36x=25x^{2}+10x+1
Користете ја биномната теорема \left(a-b\right)^{2}=a^{2}-2ab+b^{2} за проширување на \left(-5x-1\right)^{2}.
36x-25x^{2}=10x+1
Одземете 25x^{2} од двете страни.
36x-25x^{2}-10x=1
Одземете 10x од двете страни.
26x-25x^{2}=1
Комбинирајте 36x и -10x за да добиете 26x.
26x-25x^{2}-1=0
Одземете 1 од двете страни.
-25x^{2}+26x-1=0
Прераспоредете го полиномот за да го ставите во стандардна форма. Распоредете ги членовите почнувајќи од највисокиот да најнискиот степен.
a+b=26 ab=-25\left(-1\right)=25
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како -25x^{2}+ax+bx-1. За да ги најдете a и b, поставете систем за решавање.
1,25 5,5
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Наведете ги сите парови цели броеви што даваат производ 25.
1+25=26 5+5=10
Пресметајте го збирот за секој пар.
a=25 b=1
Решението е парот што дава збир 26.
\left(-25x^{2}+25x\right)+\left(x-1\right)
Препиши го -25x^{2}+26x-1 како \left(-25x^{2}+25x\right)+\left(x-1\right).
25x\left(-x+1\right)-\left(-x+1\right)
Исклучете го факторот 25x во првата група и -1 во втората група.
\left(-x+1\right)\left(25x-1\right)
Факторирај го заедничкиот термин -x+1 со помош на дистрибутивно својство.
x=1 x=\frac{1}{25}
За да најдете решенија за равенката, решете ги -x+1=0 и 25x-1=0.
\frac{3\sqrt{1}-5}{2}=\sqrt{1}-2
Заменете го 1 со x во равенката \frac{3\sqrt{x}-5}{2}=\sqrt{x}-2.
-1=-1
Поедноставување. Вредноста x=1 одговара на равенката.
\frac{3\sqrt{\frac{1}{25}}-5}{2}=\sqrt{\frac{1}{25}}-2
Заменете го \frac{1}{25} со x во равенката \frac{3\sqrt{x}-5}{2}=\sqrt{x}-2.
-\frac{11}{5}=-\frac{9}{5}
Поедноставување. Вредноста x=\frac{1}{25} не одговара на равенката.
\frac{3\sqrt{1}-5}{2}=\sqrt{1}-2
Заменете го 1 со x во равенката \frac{3\sqrt{x}-5}{2}=\sqrt{x}-2.
-1=-1
Поедноставување. Вредноста x=1 одговара на равенката.
x=1
Равенката 3\sqrt{x}-1=2\sqrt{x} има единствено решение.