Фактор
-3\left(x-2\right)^{2}
Процени
-3\left(x-2\right)^{2}
Графика
Сподели
Копирани во клипбордот
3\left(-x^{2}-4+4x\right)
Исклучување на вредноста на факторот 3.
-x^{2}+4x-4
Запомнете, -x^{2}-4+4x. Прераспоредете го полиномот за да го ставите во стандардна форма. Распоредете ги членовите почнувајќи од највисокиот да најнискиот степен.
a+b=4 ab=-\left(-4\right)=4
Факторирајте го изразот со групирање. Прво, изразот треба да се препише како -x^{2}+ax+bx-4. За да ги најдете a и b, поставете систем за решавање.
1,4 2,2
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Наведете ги сите парови цели броеви што даваат производ 4.
1+4=5 2+2=4
Пресметајте го збирот за секој пар.
a=2 b=2
Решението е парот што дава збир 4.
\left(-x^{2}+2x\right)+\left(2x-4\right)
Препиши го -x^{2}+4x-4 како \left(-x^{2}+2x\right)+\left(2x-4\right).
-x\left(x-2\right)+2\left(x-2\right)
Исклучете го факторот -x во првата група и 2 во втората група.
\left(x-2\right)\left(-x+2\right)
Факторирај го заедничкиот термин x-2 со помош на дистрибутивно својство.
3\left(x-2\right)\left(-x+2\right)
Препишете го целиот факториран израз.
-3x^{2}+12x-12=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-12±\sqrt{144-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
Квадрат од 12.
x=\frac{-12±\sqrt{144+12\left(-12\right)}}{2\left(-3\right)}
Множење на -4 со -3.
x=\frac{-12±\sqrt{144-144}}{2\left(-3\right)}
Множење на 12 со -12.
x=\frac{-12±\sqrt{0}}{2\left(-3\right)}
Собирање на 144 и -144.
x=\frac{-12±0}{2\left(-3\right)}
Вадење квадратен корен од 0.
x=\frac{-12±0}{-6}
Множење на 2 со -3.
-3x^{2}+12x-12=-3\left(x-2\right)\left(x-2\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го 2 со x_{1} и 2 со x_{2}.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}