Tīpoka ki ngā ihirangi matua
Whakaoti mō z_1
Tick mark Image
Whakaoti mō z_2
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z_{1}z_{2}=\left(1-i\right)\sqrt{3}+\left(1+i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 1-i ki te \sqrt{3}+i.
z_{2}z_{1}=\sqrt{3}\left(1-i\right)+\left(1+i\right)
He hanga arowhānui tō te whārite.
\frac{z_{2}z_{1}}{z_{2}}=\frac{\sqrt{3}\left(1-i\right)+\left(1+i\right)}{z_{2}}
Whakawehea ngā taha e rua ki te z_{2}.
z_{1}=\frac{\sqrt{3}\left(1-i\right)+\left(1+i\right)}{z_{2}}
Mā te whakawehe ki te z_{2} ka wetekia te whakareanga ki te z_{2}.
z_{1}z_{2}=\left(1-i\right)\sqrt{3}+\left(1+i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 1-i ki te \sqrt{3}+i.
z_{1}z_{2}=\sqrt{3}\left(1-i\right)+\left(1+i\right)
He hanga arowhānui tō te whārite.
\frac{z_{1}z_{2}}{z_{1}}=\frac{\sqrt{3}\left(1-i\right)+\left(1+i\right)}{z_{1}}
Whakawehea ngā taha e rua ki te z_{1}.
z_{2}=\frac{\sqrt{3}\left(1-i\right)+\left(1+i\right)}{z_{1}}
Mā te whakawehe ki te z_{1} ka wetekia te whakareanga ki te z_{1}.