Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(z-1\right)^{2}=\left(\sqrt{21-3z}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
z^{2}-2z+1=\left(\sqrt{21-3z}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(z-1\right)^{2}.
z^{2}-2z+1=21-3z
Tātaihia te \sqrt{21-3z} mā te pū o 2, kia riro ko 21-3z.
z^{2}-2z+1-21=-3z
Tangohia te 21 mai i ngā taha e rua.
z^{2}-2z-20=-3z
Tangohia te 21 i te 1, ka -20.
z^{2}-2z-20+3z=0
Me tāpiri te 3z ki ngā taha e rua.
z^{2}+z-20=0
Pahekotia te -2z me 3z, ka z.
a+b=1 ab=-20
Hei whakaoti i te whārite, whakatauwehea te z^{2}+z-20 mā te whakamahi i te tātai z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,20 -2,10 -4,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
-1+20=19 -2+10=8 -4+5=1
Tātaihia te tapeke mō ia takirua.
a=-4 b=5
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(z-4\right)\left(z+5\right)
Me tuhi anō te kīanga whakatauwehe \left(z+a\right)\left(z+b\right) mā ngā uara i tātaihia.
z=4 z=-5
Hei kimi otinga whārite, me whakaoti te z-4=0 me te z+5=0.
4-1=\sqrt{21-3\times 4}
Whakakapia te 4 mō te z i te whārite z-1=\sqrt{21-3z}.
3=3
Whakarūnātia. Ko te uara z=4 kua ngata te whārite.
-5-1=\sqrt{21-3\left(-5\right)}
Whakakapia te -5 mō te z i te whārite z-1=\sqrt{21-3z}.
-6=6
Whakarūnātia. Ko te uara z=-5 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
z=4
Ko te whārite z-1=\sqrt{21-3z} he rongoā ahurei.