Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z^{2}\times 5=5
Whakareatia te z ki te z, ka z^{2}.
z^{2}=\frac{5}{5}
Whakawehea ngā taha e rua ki te 5.
z^{2}=1
Whakawehea te 5 ki te 5, kia riro ko 1.
z=1 z=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z^{2}\times 5=5
Whakareatia te z ki te z, ka z^{2}.
z^{2}\times 5-5=0
Tangohia te 5 mai i ngā taha e rua.
5z^{2}-5=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\times 5\left(-5\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\times 5\left(-5\right)}}{2\times 5}
Pūrua 0.
z=\frac{0±\sqrt{-20\left(-5\right)}}{2\times 5}
Whakareatia -4 ki te 5.
z=\frac{0±\sqrt{100}}{2\times 5}
Whakareatia -20 ki te -5.
z=\frac{0±10}{2\times 5}
Tuhia te pūtakerua o te 100.
z=\frac{0±10}{10}
Whakareatia 2 ki te 5.
z=1
Nā, me whakaoti te whārite z=\frac{0±10}{10} ina he tāpiri te ±. Whakawehe 10 ki te 10.
z=-1
Nā, me whakaoti te whārite z=\frac{0±10}{10} ina he tango te ±. Whakawehe -10 ki te 10.
z=1 z=-1
Kua oti te whārite te whakatau.