Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-t+1=0
Whakakapia te t mō te z^{3}.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -1 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{1±\sqrt{-3}}{2}
Mahia ngā tātaitai.
t=\frac{1+\sqrt{3}i}{2} t=\frac{-\sqrt{3}i+1}{2}
Whakaotia te whārite t=\frac{1±\sqrt{-3}}{2} ina he tōrunga te ±, ina he tōraro te ±.
z=-e^{\frac{4\pi i}{9}} z=ie^{\frac{5\pi i}{18}} z=e^{\frac{\pi i}{9}} z=-ie^{\frac{7\pi i}{18}} z=-e^{\frac{2\pi i}{9}} z=ie^{\frac{\pi i}{18}}
Mai i te z=t^{3}, ka taea ngā otinga mā te whakaoti te whārite mō ia t.