Whakaoti mō z (complex solution)
z=\frac{-\sqrt{3}i-1}{2}\approx -0.5-0.866025404i
z=1
z=\frac{-1+\sqrt{3}i}{2}\approx -0.5+0.866025404i
Whakaoti mō z
z=1
Tohaina
Kua tāruatia ki te papatopenga
±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
z=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
z^{2}+z+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te z-k o te pūrau mō ia pūtake k. Whakawehea te z^{3}-1 ki te z-1, kia riro ko z^{2}+z+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
z=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 1 mō te b, me te 1 mō te c i te ture pūrua.
z=\frac{-1±\sqrt{-3}}{2}
Mahia ngā tātaitai.
z=\frac{-\sqrt{3}i-1}{2} z=\frac{-1+\sqrt{3}i}{2}
Whakaotia te whārite z^{2}+z+1=0 ina he tōrunga te ±, ina he tōraro te ±.
z=1 z=\frac{-\sqrt{3}i-1}{2} z=\frac{-1+\sqrt{3}i}{2}
Rārangitia ngā otinga katoa i kitea.
±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
z=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
z^{2}+z+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te z-k o te pūrau mō ia pūtake k. Whakawehea te z^{3}-1 ki te z-1, kia riro ko z^{2}+z+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
z=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 1 mō te b, me te 1 mō te c i te ture pūrua.
z=\frac{-1±\sqrt{-3}}{2}
Mahia ngā tātaitai.
z\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
z=1
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}