Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-6 ab=1\left(-16\right)=-16
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei z^{2}+az+bz-16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-16 2,-8 4,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -16.
1-16=-15 2-8=-6 4-4=0
Tātaihia te tapeke mō ia takirua.
a=-8 b=2
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(z^{2}-8z\right)+\left(2z-16\right)
Tuhia anō te z^{2}-6z-16 hei \left(z^{2}-8z\right)+\left(2z-16\right).
z\left(z-8\right)+2\left(z-8\right)
Tauwehea te z i te tuatahi me te 2 i te rōpū tuarua.
\left(z-8\right)\left(z+2\right)
Whakatauwehea atu te kīanga pātahi z-8 mā te whakamahi i te āhuatanga tātai tohatoha.
z^{2}-6z-16=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-16\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-6\right)±\sqrt{36-4\left(-16\right)}}{2}
Pūrua -6.
z=\frac{-\left(-6\right)±\sqrt{36+64}}{2}
Whakareatia -4 ki te -16.
z=\frac{-\left(-6\right)±\sqrt{100}}{2}
Tāpiri 36 ki te 64.
z=\frac{-\left(-6\right)±10}{2}
Tuhia te pūtakerua o te 100.
z=\frac{6±10}{2}
Ko te tauaro o -6 ko 6.
z=\frac{16}{2}
Nā, me whakaoti te whārite z=\frac{6±10}{2} ina he tāpiri te ±. Tāpiri 6 ki te 10.
z=8
Whakawehe 16 ki te 2.
z=-\frac{4}{2}
Nā, me whakaoti te whārite z=\frac{6±10}{2} ina he tango te ±. Tango 10 mai i 6.
z=-2
Whakawehe -4 ki te 2.
z^{2}-6z-16=\left(z-8\right)\left(z-\left(-2\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 8 mō te x_{1} me te -2 mō te x_{2}.
z^{2}-6z-16=\left(z-8\right)\left(z+2\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.