Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z^{2}-3z+\frac{9}{4}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{9}{4}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me \frac{9}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{9}{4}}}{2}
Pūrua -3.
z=\frac{-\left(-3\right)±\sqrt{9-9}}{2}
Whakareatia -4 ki te \frac{9}{4}.
z=\frac{-\left(-3\right)±\sqrt{0}}{2}
Tāpiri 9 ki te -9.
z=-\frac{-3}{2}
Tuhia te pūtakerua o te 0.
z=\frac{3}{2}
Ko te tauaro o -3 ko 3.
z^{2}-3z+\frac{9}{4}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\left(z-\frac{3}{2}\right)^{2}=0
Tauwehea z^{2}-3z+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z-\frac{3}{2}=0 z-\frac{3}{2}=0
Whakarūnātia.
z=\frac{3}{2} z=\frac{3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
z=\frac{3}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.