Whakaoti mō z
z=10
Tohaina
Kua tāruatia ki te papatopenga
z^{2}-20z+100=0
Me tāpiri te 100 ki ngā taha e rua.
a+b=-20 ab=100
Hei whakaoti i te whārite, whakatauwehea te z^{2}-20z+100 mā te whakamahi i te tātai z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 100.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
Tātaihia te tapeke mō ia takirua.
a=-10 b=-10
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(z-10\right)\left(z-10\right)
Me tuhi anō te kīanga whakatauwehe \left(z+a\right)\left(z+b\right) mā ngā uara i tātaihia.
\left(z-10\right)^{2}
Tuhia anōtia hei pūrua huarua.
z=10
Hei kimi i te otinga whārite, whakaotia te z-10=0.
z^{2}-20z+100=0
Me tāpiri te 100 ki ngā taha e rua.
a+b=-20 ab=1\times 100=100
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei z^{2}+az+bz+100. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 100.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
Tātaihia te tapeke mō ia takirua.
a=-10 b=-10
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(z^{2}-10z\right)+\left(-10z+100\right)
Tuhia anō te z^{2}-20z+100 hei \left(z^{2}-10z\right)+\left(-10z+100\right).
z\left(z-10\right)-10\left(z-10\right)
Tauwehea te z i te tuatahi me te -10 i te rōpū tuarua.
\left(z-10\right)\left(z-10\right)
Whakatauwehea atu te kīanga pātahi z-10 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(z-10\right)^{2}
Tuhia anōtia hei pūrua huarua.
z=10
Hei kimi i te otinga whārite, whakaotia te z-10=0.
z^{2}-20z=-100
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z^{2}-20z-\left(-100\right)=-100-\left(-100\right)
Me tāpiri 100 ki ngā taha e rua o te whārite.
z^{2}-20z-\left(-100\right)=0
Mā te tango i te -100 i a ia ake anō ka toe ko te 0.
z^{2}-20z+100=0
Tango -100 mai i 0.
z=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 100}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -20 mō b, me 100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-20\right)±\sqrt{400-4\times 100}}{2}
Pūrua -20.
z=\frac{-\left(-20\right)±\sqrt{400-400}}{2}
Whakareatia -4 ki te 100.
z=\frac{-\left(-20\right)±\sqrt{0}}{2}
Tāpiri 400 ki te -400.
z=-\frac{-20}{2}
Tuhia te pūtakerua o te 0.
z=\frac{20}{2}
Ko te tauaro o -20 ko 20.
z=10
Whakawehe 20 ki te 2.
z^{2}-20z=-100
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
z^{2}-20z+\left(-10\right)^{2}=-100+\left(-10\right)^{2}
Whakawehea te -20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -10. Nā, tāpiria te pūrua o te -10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}-20z+100=-100+100
Pūrua -10.
z^{2}-20z+100=0
Tāpiri -100 ki te 100.
\left(z-10\right)^{2}=0
Tauwehea z^{2}-20z+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-10\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z-10=0 z-10=0
Whakarūnātia.
z=10 z=10
Me tāpiri 10 ki ngā taha e rua o te whārite.
z=10
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}