Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z^{2}-2iz+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{2i±\sqrt{\left(-2i\right)^{2}-4\times 3}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2i mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{2i±\sqrt{-4-4\times 3}}{2}
Pūrua -2i.
z=\frac{2i±\sqrt{-4-12}}{2}
Whakareatia -4 ki te 3.
z=\frac{2i±\sqrt{-16}}{2}
Tāpiri -4 ki te -12.
z=\frac{2i±4i}{2}
Tuhia te pūtakerua o te -16.
z=\frac{6i}{2}
Nā, me whakaoti te whārite z=\frac{2i±4i}{2} ina he tāpiri te ±. Tāpiri 2i ki te 4i.
z=3i
Whakawehe 6i ki te 2.
z=\frac{-2i}{2}
Nā, me whakaoti te whārite z=\frac{2i±4i}{2} ina he tango te ±. Tango 4i mai i 2i.
z=-i
Whakawehe -2i ki te 2.
z=3i z=-i
Kua oti te whārite te whakatau.
z^{2}-2iz+3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
z^{2}-2iz+3-3=-3
Me tango 3 mai i ngā taha e rua o te whārite.
z^{2}-2iz=-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
z^{2}-2iz+\left(-i\right)^{2}=-3+\left(-i\right)^{2}
Whakawehea te -2i, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -i. Nā, tāpiria te pūrua o te -i ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}-2iz-1=-3-1
Pūrua -i.
z^{2}-2iz-1=-4
Tāpiri -3 ki te -1.
\left(z-i\right)^{2}=-4
Tauwehea z^{2}-2iz-1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-i\right)^{2}}=\sqrt{-4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z-i=2i z-i=-2i
Whakarūnātia.
z=3i z=-i
Me tāpiri i ki ngā taha e rua o te whārite.