Tauwehe
\left(z-11\right)\left(z-2\right)
Aromātai
\left(z-11\right)\left(z-2\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-13 ab=1\times 22=22
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei z^{2}+az+bz+22. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-22 -2,-11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 22.
-1-22=-23 -2-11=-13
Tātaihia te tapeke mō ia takirua.
a=-11 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(z^{2}-11z\right)+\left(-2z+22\right)
Tuhia anō te z^{2}-13z+22 hei \left(z^{2}-11z\right)+\left(-2z+22\right).
z\left(z-11\right)-2\left(z-11\right)
Tauwehea te z i te tuatahi me te -2 i te rōpū tuarua.
\left(z-11\right)\left(z-2\right)
Whakatauwehea atu te kīanga pātahi z-11 mā te whakamahi i te āhuatanga tātai tohatoha.
z^{2}-13z+22=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 22}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-13\right)±\sqrt{169-4\times 22}}{2}
Pūrua -13.
z=\frac{-\left(-13\right)±\sqrt{169-88}}{2}
Whakareatia -4 ki te 22.
z=\frac{-\left(-13\right)±\sqrt{81}}{2}
Tāpiri 169 ki te -88.
z=\frac{-\left(-13\right)±9}{2}
Tuhia te pūtakerua o te 81.
z=\frac{13±9}{2}
Ko te tauaro o -13 ko 13.
z=\frac{22}{2}
Nā, me whakaoti te whārite z=\frac{13±9}{2} ina he tāpiri te ±. Tāpiri 13 ki te 9.
z=11
Whakawehe 22 ki te 2.
z=\frac{4}{2}
Nā, me whakaoti te whārite z=\frac{13±9}{2} ina he tango te ±. Tango 9 mai i 13.
z=2
Whakawehe 4 ki te 2.
z^{2}-13z+22=\left(z-11\right)\left(z-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 11 mō te x_{1} me te 2 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}