Whakaoti mō z
z=-1
Tohaina
Kua tāruatia ki te papatopenga
z^{2}-\left(-1\right)=-2z
Tangohia te -1 mai i ngā taha e rua.
z^{2}+1=-2z
Ko te tauaro o -1 ko 1.
z^{2}+1+2z=0
Me tāpiri te 2z ki ngā taha e rua.
z^{2}+2z+1=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=1
Hei whakaoti i te whārite, whakatauwehea te z^{2}+2z+1 mā te whakamahi i te tātai z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(z+1\right)\left(z+1\right)
Me tuhi anō te kīanga whakatauwehe \left(z+a\right)\left(z+b\right) mā ngā uara i tātaihia.
\left(z+1\right)^{2}
Tuhia anōtia hei pūrua huarua.
z=-1
Hei kimi i te otinga whārite, whakaotia te z+1=0.
z^{2}-\left(-1\right)=-2z
Tangohia te -1 mai i ngā taha e rua.
z^{2}+1=-2z
Ko te tauaro o -1 ko 1.
z^{2}+1+2z=0
Me tāpiri te 2z ki ngā taha e rua.
z^{2}+2z+1=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=1\times 1=1
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei z^{2}+az+bz+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(z^{2}+z\right)+\left(z+1\right)
Tuhia anō te z^{2}+2z+1 hei \left(z^{2}+z\right)+\left(z+1\right).
z\left(z+1\right)+z+1
Whakatauwehea atu z i te z^{2}+z.
\left(z+1\right)\left(z+1\right)
Whakatauwehea atu te kīanga pātahi z+1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(z+1\right)^{2}
Tuhia anōtia hei pūrua huarua.
z=-1
Hei kimi i te otinga whārite, whakaotia te z+1=0.
z^{2}-\left(-1\right)=-2z
Tangohia te -1 mai i ngā taha e rua.
z^{2}+1=-2z
Ko te tauaro o -1 ko 1.
z^{2}+1+2z=0
Me tāpiri te 2z ki ngā taha e rua.
z^{2}+2z+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-2±\sqrt{2^{2}-4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-2±\sqrt{4-4}}{2}
Pūrua 2.
z=\frac{-2±\sqrt{0}}{2}
Tāpiri 4 ki te -4.
z=-\frac{2}{2}
Tuhia te pūtakerua o te 0.
z=-1
Whakawehe -2 ki te 2.
z^{2}+2z=-1
Me tāpiri te 2z ki ngā taha e rua.
z^{2}+2z+1^{2}=-1+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}+2z+1=-1+1
Pūrua 1.
z^{2}+2z+1=0
Tāpiri -1 ki te 1.
\left(z+1\right)^{2}=0
Tauwehea z^{2}+2z+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+1\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z+1=0 z+1=0
Whakarūnātia.
z=-1 z=-1
Me tango 1 mai i ngā taha e rua o te whārite.
z=-1
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}